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Bayes spaces

Population age distributions in Upper Austria
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• 15 political districts, age distributions of men and women
living in 114 municipalities of Upper Austria (population
pyramids)

• Aim: to describe the available population age densities and
perform a dimensionality reduction (PCA)
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Bayes spaces

Income distributions in Italian regions

• Similarly for . . . Italian Survey on Household Income and
Wealth (SHIW) income data (income distributions in all 20
Italian regions)
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Bayes spaces

Densities as relative data

statistical processing of density functions using tools of FDA
(Ramsay and Silverman, 2005) is of increasing interest due to
the necessity of aggregating massive data while keeping their
internal variation and structure
examples: age distributions/population pyramids, income
distributions, anthropometric distributions (height, weight),
particle size distributions, concentration distributions,
metabolite distributions,. . .

density functions are inherently characterized by scale
invariance and relative scale
an infinite-dimensional extension of compositional data
(Aitchison, 1986), characterized by the Aitchison geometry on
the simplex with the Euclidean vector space structure
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Bayes spaces

Densities as relative data

scale invariance: the constant sum constraint∫
Ω f (x)dx = 1 = P(Ω) leads to a representation within a
class of functions which provide the same kind of information
– namely, the equivalence class of functions which are
proportional to the density function

relative scale property: small function values of densities
(=relative likelihood) form the main source of variability

both the scale invariance and the relative scale properties are
ignored when probability density functions are considered just
like unconstrained functional data
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Bayes spaces

Densities and functional data analysis

Functional data analysis (Ramsay and Silverman, 2005) based
on geometry of L2 Hilbert spaces works well for some
well-known examples:

. . . but is not appropriate for density functions
→ Bayes spaces (B2) (Egozcue et al., 2006; van den Boogaart

et al., 2014) – Hilbert space structure for densities with
square-integrable logarithm
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Bayes spaces

Bayes spaces: geometry

Compact support (interval) I = [a, b], a, b ∈ R, a < b represents
the common case in applications, η = b − a.

pertubation (sum operation)

(f ⊕ g)(t) =B2(I ) f (t) · g(t), t ∈ I ,

powering (product by a constant)

(α⊙ f )(t) =B2(I ) f (t)
α, t ∈ I ,

inner product between two λ-densities

⟨f , g⟩B2(I ) =
1

2η

∫
I

∫
I
ln

f (t)

f (u)
ln

g(t)

g(u)
dt du, t, u ∈ I .
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Bayes spaces

Bayes spaces: geometry
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Powering

Example of perturbation and powering in B2(I ), compared to the standard operations

in L2(λ). Left: Perturbation f ⊕ g (solid black line) of two Gaussian densities f , g

restricted to I = [−5, 5] (grey lines), and the sum f + g in the space L2(λ) (dot-dashed

line). Right: Powering of a Gaussian density f restricted to I = [−5, 5] (grey line) by

α = 2, α⊙ f (solid black line), and the counterpart α · f in L2 (dot-dashed line).
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Bayes spaces

Representation of PDFs in L2: clr transformation

• Goal: To perform popular FDA methods, developed mostly
under the assumption of the L2 space → map PDFs into
(a subspace of) the L2 space . . . the L20 space

→ centred logratio (clr) transformation:

clr(f )(t) = f c(t) = ln f (t)− 1

η

∫
I
ln f (s)ds,

∫
I
f c(t)dt = 0;

• the Bayes space geometry transforms accordingly:
▶ clr(f ⊕g)(t) = f c(t)+g c(t), clr(α⊙f )(t) = α·f c(t), t ∈ I
▶ ⟨f , g⟩B2(I ) = ⟨clr(f ), clr(g)⟩L2(I )

⇒ computations directly in the Bayes space can be avoided
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Exploratory density data analysis

EDDA: sample mean

• . . . any exploratory density data analysis (EDDA) usually
starts with . . .

• Given a sample X1, ...,XN in B2(I ), I = [a, b], a, b ∈ R, a < b

• Sample mean: X = 1
N ⊙

⊕N
i=1 Xi

• It can be computed through the back-transform of the sample
mean in L20 of the clr-transformed data (the latter being
defined point-wise)

X = clr−1(X
c
), X

c
=

1

N

N∑
i=1

X c
i
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Exploratory density data analysis

EDDA: sample covariance function

• Specifies the covariance between density values at t, s ∈ Ω

• Assigned to one FDA object (here PDF, or a sample of PDFs)

• Defined directly in the clr-space (as in the usual L2 space)

• Sample covariance function:

v(s, t) =
1

N

N∑
i=1

(X c
i (s)− X

c
(s))(X c

i (t)− X
c
(t))

• Can be visualized as function of two variables (for smoothed
clr-transformed densities)
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Exploratory density data analysis

EDDA: Age distributions in Upper Austria

Male and female populations: Sample mean and sample covariance function
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SFPCA

Functional principal component analysis (FPCA)

• Consider a centred functional random sample X1, ...,XN in
L2(I ), i.e. from all observations X = 1

N

∑N
i=1 Xi is subtracted

• FPCA looks firstly for the main mode of variability, i.e., for
the element ξ1 in L2(I ) – called first functional principal
component (FPC)– maximizing over ξ ∈ L2(I )

1

N

N∑
i=1

⟨Xi , ξ⟩22 subject to ∥ξ∥2 = 1.

• Aim: to capture the main modes of variability of the data by
means of a small number K of linear combinations of the
original variables: Xi ≈

∑K
k=1⟨Xi , ξk⟩2ξk
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SFPCA

Functional principal component analysis (FPCA)

• The remaining FPCs, {ξj}j≥2, capture the remaining modes of
variability subject to be mutually orthogonal, and are thus
obtained by solving problem the previous maximization
problem with the additional orthogonality constraint
⟨ξk , ξ⟩2 = 0, k < j

→ Outputs: eigenfunctions of the covariance
operator/harmonics ξj (interpreted in terms of the original
data) and scores (coefficients, representing data structure of
the original observations)
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SFPCA

FPCA: computational details

• Dealing with FPCA is analogous to the multivariate PCA

• The FPCs {ξj}j≥1 coincide with the eigenfunctions of the
sample covariance operator V : L2(I ) → L2(I ), acting on
x ∈ L2(I ) as

Vx =
1

N

N∑
i=1

⟨Xi , x⟩2Xi

→ The j-th FPC ξj and the associated scores Ψij = ⟨Xi , ξj⟩2,
i = 1, ...,N, are obtained by solving the eigenvalue equation

V ξj = ρjξj ;

ρj denotes the j-th eigenvalue, with ρ1 ≥ ρ2 ≥ ... .
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SFPCA

FPCA: computational details

• For each j , the term ρj/
∑

j ρj is associated with the
proportion of total variability explained by the FPC ξj .

• The eigenvalue equation is solved using basis expansion of
each datum Xi , i = 1, ...,N using K known basis functions
ϕ1, ..., ϕK :

Xi (·) =
K∑

k=1

cikϕk(·),

where cik = ⟨Xi , ϕk⟩2, k = 1, ...,K

→ Commonly, smoothing splines are used for this purpose
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SFPCA

Simplicial functional principal component analysis

→ SFPCA: Reformulate FPCA in terms of Bayes spaces for
X1, ...,XN being a (centred) sample in B2(I ), i.e., we
performed perturbation-subtraction by X = 1

N ⊙
⊕N

i=1 Xi

• Maximizing over ζ ∈ B2(I )

1

N

N∑
i=1

⟨Xi , ζ⟩2B subject to ∥ζ∥B = 1; ⟨ζj , ζk⟩B = 0, k < j

→ We can formulate the problem and find the unique solution
because B2(I ) is a separable Hilbert space

→ Problem: how to efficiently implement all of this?
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SFPCA

Clr transformation and SFPCA

• Goal: To perform SFPCA exploiting the efficient routines
available in L2 space (i.e., avoid computations in Bayes
spaces)

→ Through centred logratio (clr) transformation:

clr(f )(t) = f c(t) = ln f (t)− 1

η

∫
I
ln f (s)ds,

∫
I
f c(t)dt = 0;

• Consequence for FPCA in clr space: ξ0 ≡ 1/
√
b − a

• The zero integral constraint needs to be incorporated into the
basis expansion → compositional splines
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SFPCA

Example: Compositional splines

• Unlike the usual case of B-splines, here the basis functions
honor the zero intergral constraint

• Example with geological densities (particle size distributions)
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SFPCA
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SFPCA

Example: Truncated normal PDFs

• Normal densities, µ = 0, σi = exp(−1 + (i − 1)/10),
i = 1, ..., 21, I = [−5, 5]

f (t;σi ) =B2 exp

{
− t2

2σ2
i

}
, t ∈ I , (1)

=B2(I ) denotes the equivalence in the space B2(I )

f c(t;σi ) = − t2

2σ2
i

+
25

6σ2
i

, t ∈ I .
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SFPCA

Dimensionality of PDFs from the exponential family

An important feature of (log-)normal densities in context of Bayes
spaces is that they belong to the extended exponential family:

• Recall that a k-parametric extended exponential family on Ω,
ExpB2(I )(g ,T ,ϑ) is a collection of densities

f (t,α) =B2(I ) g(t) · exp


k∑

j=1

ϑj(α)Tj(t)

 , t ∈ Ω,

where α denotes the k-dimensional vector of parameters in a
k-dimensional parameter space A, while functions g : Ω → R,
ϑj : A → R and Tj : Ω → R, j = 1, ..., k, are Borel-measurable

• An extended exponential family on Ω is a finite dimensional
affine subspace of the Bayes space B2(I )
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SFPCA

Dimensionality of PDFs from the exponential family

• Most routinely used distributions belong to the exponential
family

• Example: a Gaussian density N(0, σ2) restricted on Ω
belongs to a 1-parametric extended exponential family, with
α = σ, ϑ1(α) = 1/σ2, and T1(t) = −t2
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SFPCA

Dimensionality of PDFs from the exponential family

• A PDF in ExpB(I )(g ,T ,ϑ) can be expressed as a linear
combination in B2(I ):

f (t,α) =B2(I ) g(t)⊕
k⊕

j=1

[ϑj(α)⊙ exp{Tj(t)}] , t ∈ Ω,

• Clr-transformed:

f c(t,α) = clr(g(t)) +
k∑

j=1

[ϑj(α) · clr(exp{Tj(t)})] , t ∈ Ω.

⇒ For k0 ≤ k uncertain parameters, the SFPCA estimates an
orthonormal basis of the corresponding k-dimensional affine
space in B2(I ), which is associated to k0 ≤ k non-zero
eigenvalues
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Applications to simulated and empirical data

Dimensionality of PDFs: normal distribution
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Applications to simulated and empirical data

Dimensionality of PDFs: gamma distribution

Data: n = 100 densities with kernel Gamma Γ(θi , κj), with
θi = 1/9 + (i − 1)/9 and κj = 2 + (j − 1)/4 for i , j = 1, . . . , 10,
and domain I = [e−7, e3]

• A Gamma distribution Γ(θ, κ) on I belongs to a 2-parametric
extended exponential family with α = (θ, κ), ϑ1(α) = θ,
ϑ2(α) = κ, T1(t) = −t, and T2(t) = ln(t), for t ∈ I

• We expect now that a sensible dimensionality reduction
method will single out the dimension k = 2 of these densities

• A comparison with FPCA for the original densities is
performed as well
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Applications to simulated and empirical data

Dimensionality of PDFs: gamma distribution
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Applications to simulated and empirical data

Dimensionality of PDFs: gamma distribution (L2)
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Dimensionality of PDFs: gamma distribution (L2)

 

Karel Hron



Applications to simulated and empirical data

SFPCA: Population age distributions

0.000

0.005

0.010

0.015

0 25 50 75 100
age

de
ns

ity sex
female
male

−4

−2

0

0 25 50 75 100
age

cl
r(

de
ns

ity
)

sex
female
male

0 20 40 60 80 100

−
0.

10
0.

00
0.

10
0.

20

FPC1 (64.8% explained variability)

age

F
P

C
1

0 20 40 60 80 100

0.
00

0
0.

01
0

Mean +/− ρ1FPC1 

age

de
ns

ity

0 20 40 60 80 100

−
0.

15
0.

00
0.

15

FPC2 (14.5% explained variability)

age

F
P

C
2

0 20 40 60 80 100

0.
00

0
0.

01
0

Mean +/− ρ2FPC2 

age

de
ns

ity

Karel Hron



Applications to simulated and empirical data

SFPCA: Population age distributions
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Applications to simulated and empirical data

SFPCA: Population age distributions
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Applications to simulated and empirical data

SFPCA: Income distributions

SFPC1 . . . 66.08% variability, SFPC2 . . . 18.14% variability
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SFPCA: R code

https://github.com/AMenafoglio/BayesSpaces-codes

(with special thanks to Ivana Pavl̊u, Palacký University)

Karel Hron
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Statistical analysis of PDFs using Bayes spaces

• Bayes spaces can be used for statistical processing of densities
using methods of FDA:

• Density-on-scalar (Talská et al., 2018), scalar-on-density
(Talská et al., 2021) and density-on-density (Scimone et al.,
2022) functional regression

• Classification (Pavl̊u et al., 2023), outlier detection (Lei et al.,
2023)

• Change point analysis (Kutta et al., 2025)
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Extension to the multivariate case

• Bayes spaces were extended to the bivariate case (Hron et al.,
2023) and to the multivariate case (Genest et al., 2023): they
enable orthogonal decomposition of multivariate PDFs into
independent and interaction parts

• Functional data analysis of multivariate densities under
development, first concise study in Matys Grygar et al. (2024)

• Related to this, also the spline representation in Bayes spaces
(Machalová et al., 2021; Hron et al., 2022) can be extended
to the multivariate case

• A great potential of Bayes spaces further in Bayesian inference
(Barfoot and D’Eleuterio, 2023; Wynne, 2023), graphical
models, conditional distributions, generalized regression. . .
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Genest, C., Hron, K., Nešlehová, J.: Orthogonal decomposition of multivariate
densities in Bayes spaces and its connection with copulas. Journal of Multivariate
Analysis 198, 105228, 2023.
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