

3rd December 2024

Designing Incentives for Collaborative Forecasting

Carla Gonçalves, carla.s.goncalves@inesctec.pt

INSTITUTE FOR SYSTEMS AND COMPUTER ENGINEERING, TECHNOLOGY AND SCIENCE

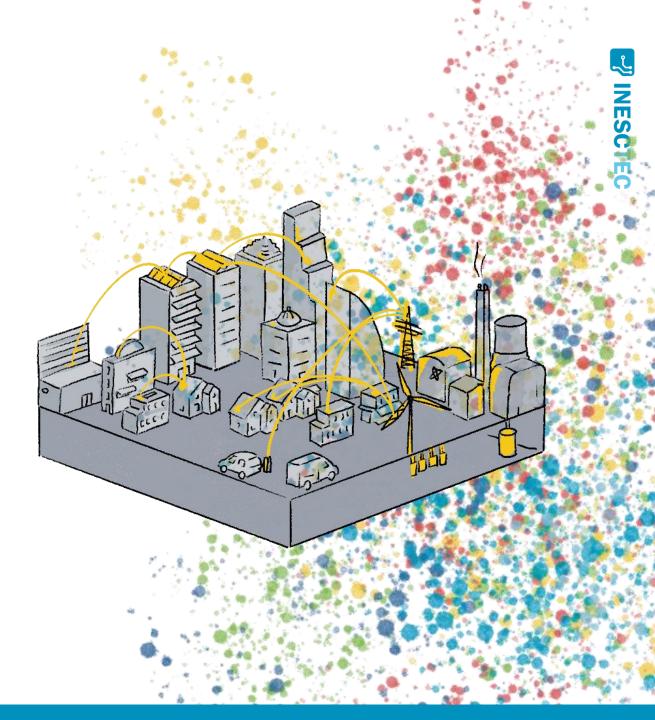
Data Generation & Collection

Including in power systems ...

Different types of data:

- Meteorological
- Network assets
- Generators
- Consumers

...



Data Generation & Collection

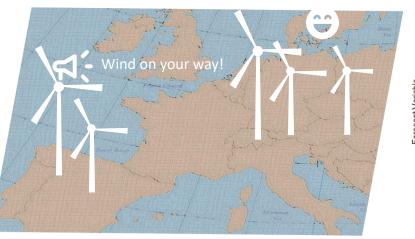
Collaborative Analytics Combining data from multiple sources can increase the accuracy of forecasts

Proprietary data (privacy, intellectual property, or regulatory reasons)

Tastu et al. "Probabilistic forecasts of wind power generation accounting for geographically dispersed information." *IEEE Transactions on Smart Grid* 5.1 (2013): 480-489.

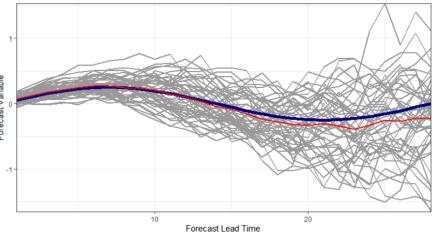
Spatio-temporal data

(helps models to capture e.g. weather patterns)



Multiple forecasts

(forecast ensemble are more stable)



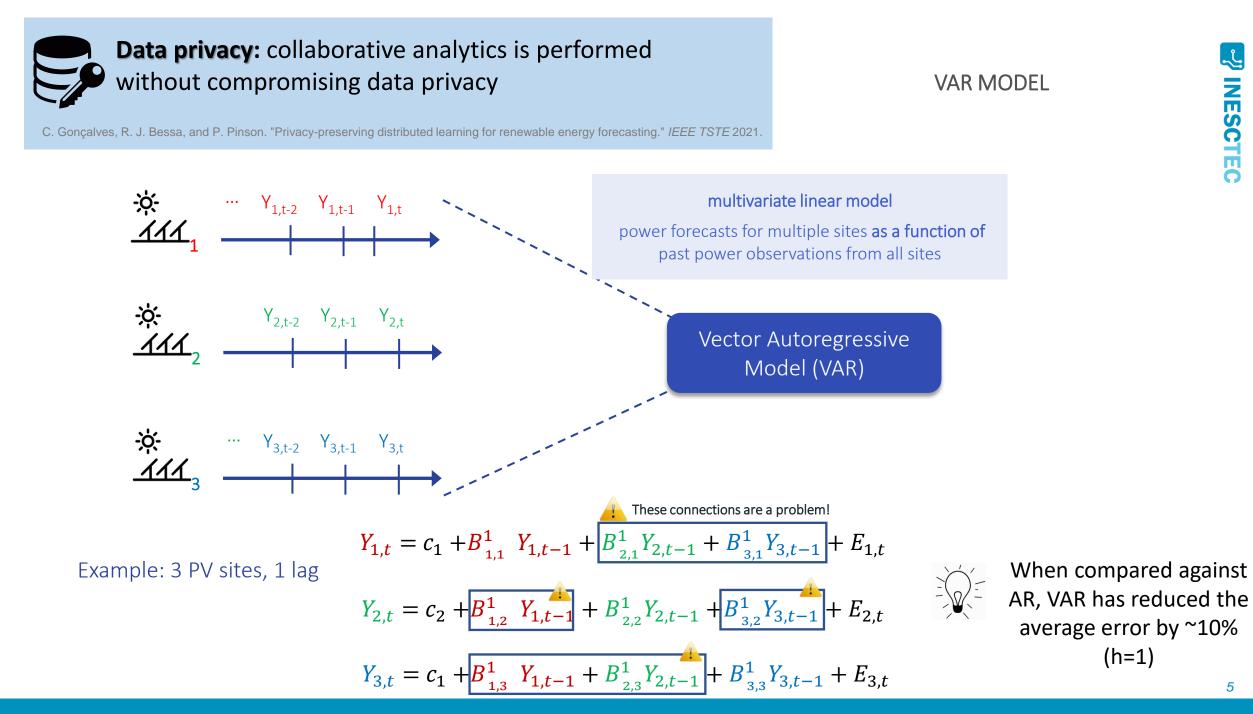
Data Generation & Collection

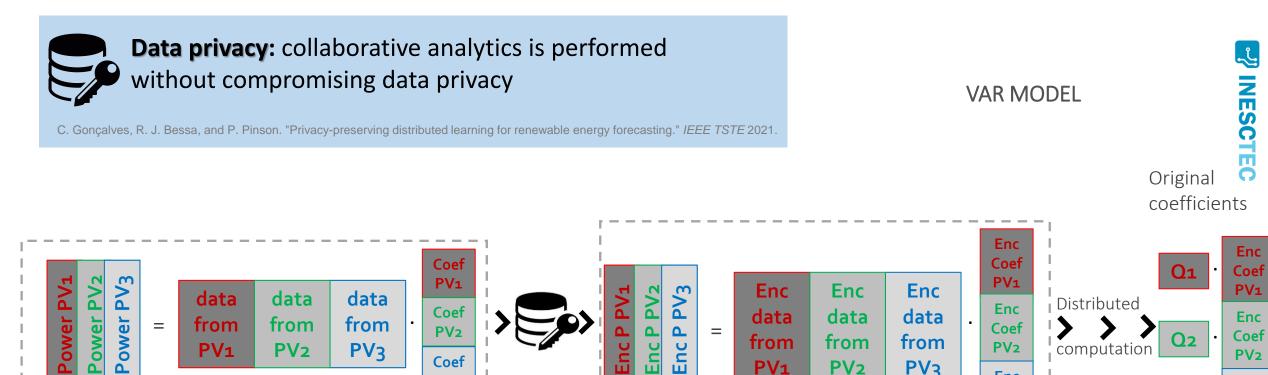
Collaborative Analytics

Proprietary data (privacy, intellectual property, or regulatory reasons)

Data privacy: collaborative analytics is performed
without compromising data privacy

C. Gonçalves, R. J. Bessa, and P. Pinson. "Privacy-preserving distributed learning for renewable energy forecasting." IEEE TSTE 2021.





Enc Enc

E

C. Gonçalves, R. J. Bessa, and P. Pinson. "A critical overview of privacy-preserving approaches for collaborative forecasting." International journal of Forecasting 37.1 (2021): 322-342.

PV₃

PV₂

Enc

Coef

PV₃

C. Gonçalves, R. J. Bessa, and P. Pinson. "Privacy-preserving distributed learning for renewable energy forecasting." IEEE TSTE 2021.

PV₂

from

PV1

PV1

Power for

multiple

PV₂

Lagged power

observations

PV3

Coef

PV₃

Coefficients

 $\mathbf{U}_{\mathbf{2}}$

Q3

PV₂

Enc

Coef

PV₃

computation

Data Generation & Collection

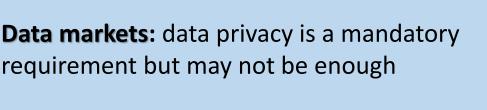
Collaborative Analytics

Data privacy: collaborative analytics is performed
without compromising data privacy

C. Gonçalves, R. J. Bessa, and P. Pinson. "Privacy-preserving distributed learning for renewable energy forecasting." IEEE TSTE 2021.

Data markets: data privacy is a mandatory requirement but may not be enough

Proprietary data (privacy, intellectual property, or regulatory reasons)



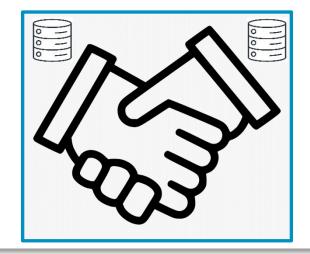
Data owners want to improve their forecasts... or share data receive some compensation

data monetization

- Data buyers: pay per accurate forecasts with collaborative forecasting models
- Data sellers: receive monetary compensation proportional to the data importance when forecasting the others' data

barter trading (data by data)

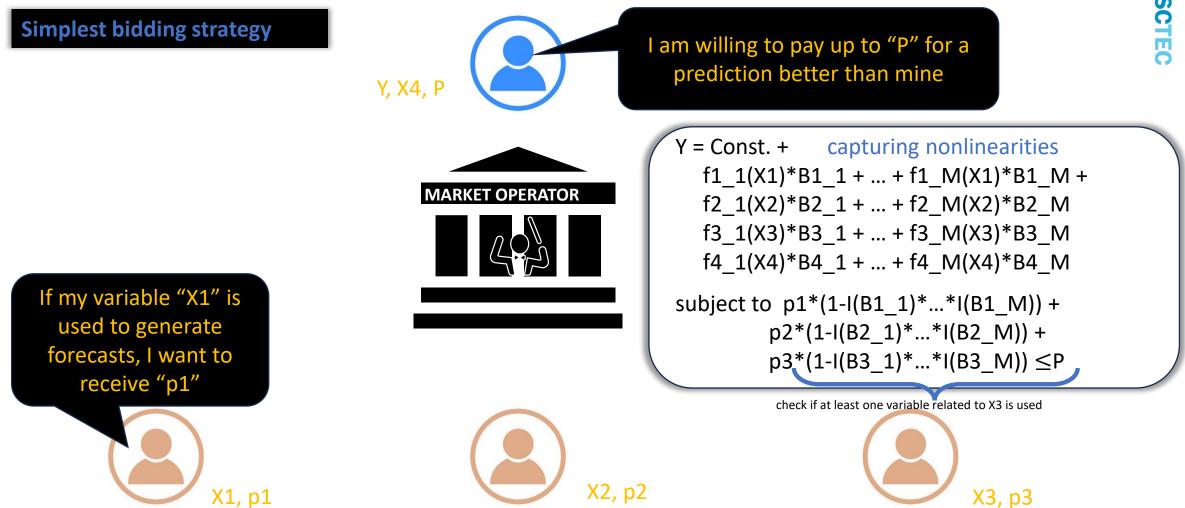
- Data owners provide and receive data with approximately the same value
- Value is measured with metrics such as mutual information, correlation, etc.



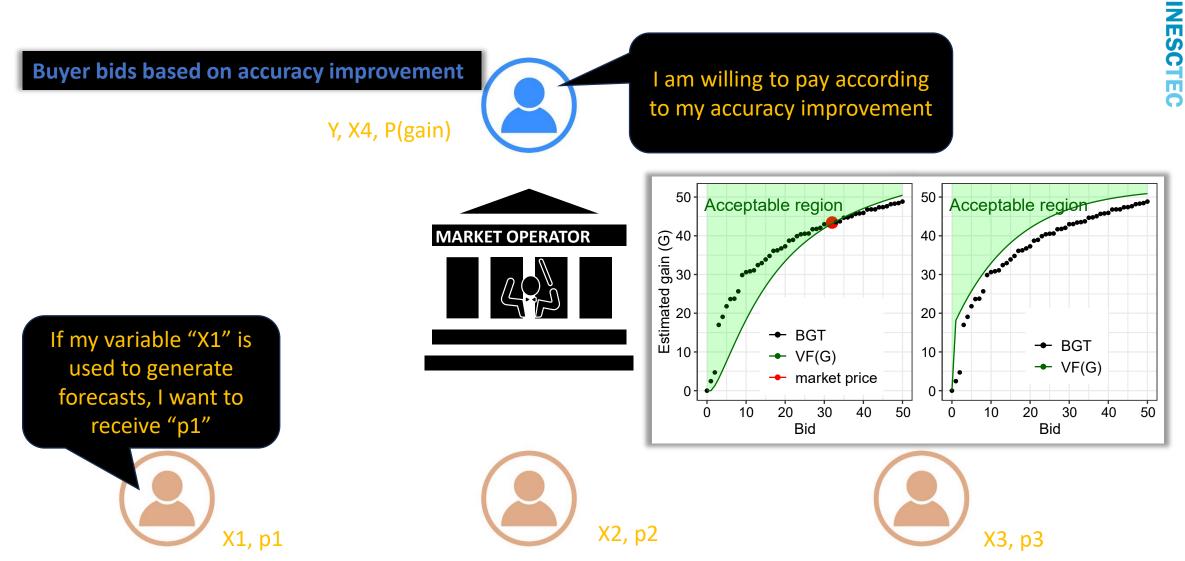
data by service/recognition

- Recognition ,e.g., as a climate change mitigator
- Proportional to the data importance when forecasting the others' data

INESCTED



data monetization



C. Gonçalves, R. J. Bessa, T. Teixeira, J. Vinagre. "Budget-constrained Collaborative Renewable Energy Forecasting Market." under review IEEE TSTE (3rd round)

G. Yu, H. Fu, and Y. Liu. "High-dimensional cost-constrained regression via nonconvex optimization." Technometrics 64.1 (2022): 52-64.

Case Study | Synthetic datasets

Y = f(X3, X7, X12, X21, X31, X48, X51, X63, X37, X90)

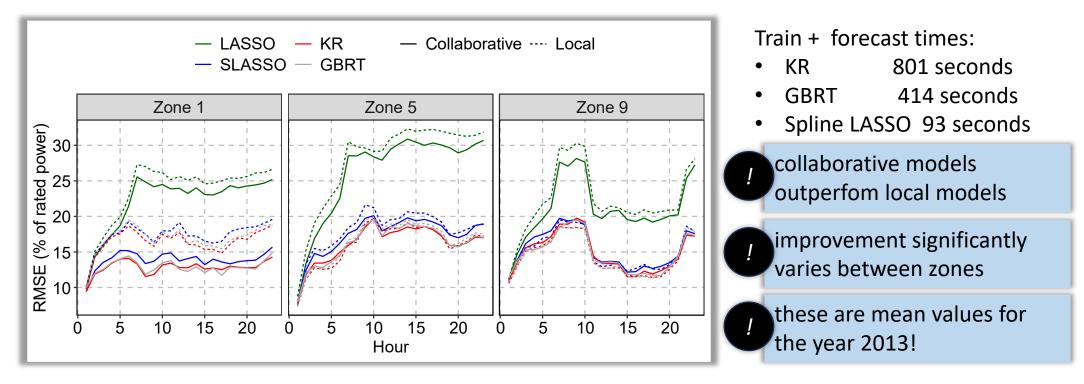
- Data buyer with one target and ten covariates (X1, X2, ..., X10)
- 90 features available on data market (X11, ..., X100)
- X37 costs 11 cents, all the others cost 10
- X3 similar to X73 (will the market select X73?)
- X37 similar to X74 (will the market select the cheapest option?)

	Linear		Non-linear				
Optimal	Case #1	Case #2	Optimal	Case #1	Case #2		
21 (22.73)	21 (26.33)	21 (22.86)	21 (15.45)	21 (28.50)	21 (25.30)		
90 (20.45)	90 (23.88)	90 (20.69)	90 (14.70)	90 (22.60)	90 (20.01)		
63 (18.18)	63 (20.86)	63 (18.07)	63 (13.98)	63 (20.52)	63 (17.92)		
48 (15.91)	48 (18.25)	48 (15.81)	48 (13.30)	48 (18.67)	48 (17.18)		
37 (9.09)	74 (10.68)	74 (8.95)	37 (11.45)	74 (9.72)	74 (8.39)		
51 (6.81)	_	51 (6.78)	51 (10.89)	_	51 (7.32)		
12 (4.55)	_	12 (4.51)	12 (10.36)	_	12 (3.88)		
31 (2.27)	_	31 (2.33)	31 (9.85)	_	_		
others (0)	_	_	others (0)	_	_		

TABLE I: Data allocation and relevance (synthetic datasets).

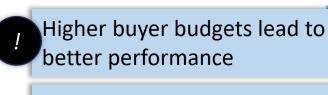
Case Study | Global Energy Forecasting Competition 2014 (GEFCom2014)

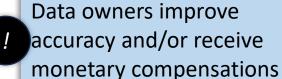
- Normalized hourly wind power measurements for 10 zones
- 24-hour-ahead **forecasts for zonal and meridional wind components** at 10m and 100m above ground level, issued daily at 00h00 to production locations.

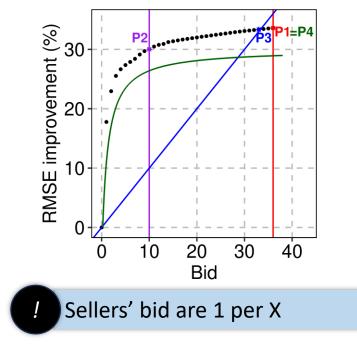


Case Study | Global Energy Forecasting Competition 2014 (GEFCom2014)

- Normalized hourly wind power measurements for 10 zones
- 24-hour-ahead **forecasts for zonal and meridional wind components** at 10m and 100m above ground level, issued daily at 00h00 to production locations.







						SLCM	1					
	Payment (↑)			Revenue (\downarrow)				Mean gain $(\mathcal{G}(\%))$				
i	\mathcal{VF}^1	\mathcal{VF}^2	\mathcal{VF}^3	\mathcal{VF}^4	\mathcal{VF}^1	\mathcal{VF}^2	\mathcal{VF}^3	\mathcal{VF}^4	\mathcal{VF}^1	$\mathcal{V}\mathcal{F}^2$	\mathcal{VF}^3	\mathcal{VF}^4
1	157941	22613	137907	60296	103211	17487	97387	44119	25.12	24.73	24.97	29.17
2	142742	29807	132772	59504	108121	22791	102774	47721	15.42	16.44	15.49	20.61
3	93827	14841	95458	33192	113268	21878	106349	48788	-1.87	-3.83	-1.86	-0.12
4	102468	22132	88939	47110	107611	10002	102073	43326	20.42	21.17	20.41	27.66
5	90894	14798	75095	44988	111547	18793	106193	46274	25.10	25.80	25.10	35.91
6	109366	18966	110560	42373	107990	18288	100552	44986	19.41	19.83	19.43	29.22
7	71848	12380	72478	38203	111038	21017	102800	44847	9.62	9.20	9.61	15.14
8	56730	10185	55863	36400	114681	28750	107278	47615	4.59	3.14	4.51	8.92
9	116838	25235	106607	48752	109046	19486	103044	46712	10.52	11.88	10.55	16.22
10	150819	32551	152278	52924	106960	25016	99507	46560	11.39	11.62	11.41	18.55

INESC

data monetization

Next Generation Reservoir Computing

Daniel J. Gauthier,^{1,2,*} Erik Bollt,^{3,4} Aaron Griffith,¹ and Wendson A.S. Barbosa¹

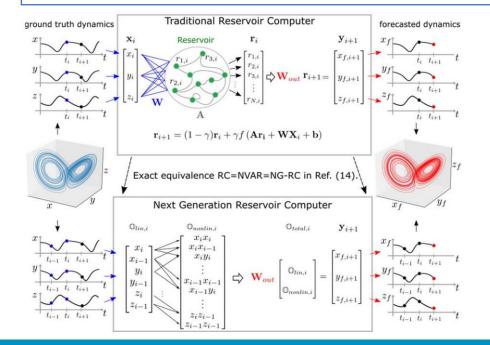
¹The Ohio State University, Department of Physics, 191 West Woodruff Ave., Columbus, OH 43210, USA.

²ResCon Technologies, LLC, PO Box 21229, Columbus, OH 43221, USA

³Clarkson University, Department of Electrical and Computer Engineering, Potsdam, NY 13669

⁴Clarkson Center for Complex Systems Science (C³S²), Potsdam, NY 13699, USA

*Correspondence to: gauthier.51@osu.edu



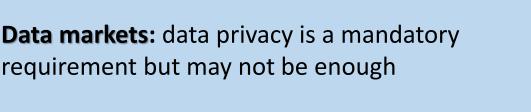
July 21, 2021

• Mixed effects: product between lags

"a linear combination of mixed effects among (shifted) time series can serve as a powerful model(...), effectively capturing dynamic system data through observed time series."

(quadratic knapsack problems if we consider two times)

Classification: logistic regression



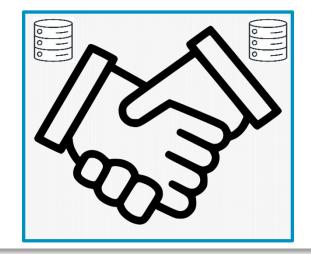
Data owners want to improve their forecasts... or share data receive some compensation

data monetization

- Data buyers: pay per accurate forecasts with collaborative forecasting models
- Data sellers: receive monetary compensation proportional to the data importance when forecasting the others' data

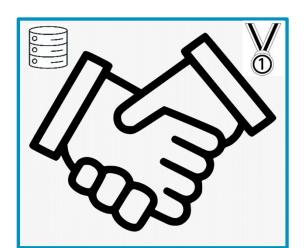
barter trading (data by data)

- Data owners provide and receive data with approximately the same value
- Value is measured with metrics such as mutual information, correlation, etc.



data by service/recognition

- ✓ Recognition ,e.g., as a climate change mitigator
- Proportional to the data importance when forecasting the others' data



I am willing to share and receive data with similar value

total value exchange

subject to

$$\left|\sum_{i'=1}^{n_i}\sum_{j}\mathbf{V}_{i'\to j}^i z_{i'\to j}^i - \sum_{k}\sum_{k'=1}^{n_k}\mathbf{V}_{k'\to i}^k z_{k'\to i}^k\right| \leq \epsilon, \quad \forall i$$

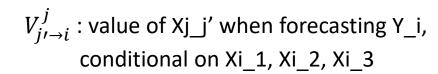
i-th data owner shared value

i-th data owner received value

$$\sum_{\{m',m\}\in\mathcal{C}_c} z_{m'\to i}^m \leq 1, \forall i, c$$

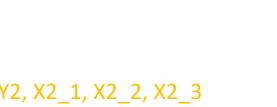
Linear Problem

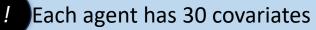
Y4, X4_1, X4_2, X4_3

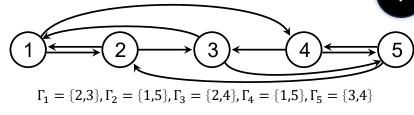


maximize value allocation

subject to |shared-received value|<eps no redundant data allocated







barter trading (data by data)

Case Study | Synthetic datasets

... evaluating metrics

$60X_i^3 + 40X_i^7 + \sum_{j \in \Gamma_i} \left[16.1X_j^{11} + 6.5X_j^{13} + 19.4X_j^{19} + 25.8X_j^{24} + 32.3X_j^{27} \right] + \varepsilon$

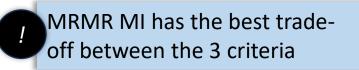
		linear			exponential		quadrat	ic (no interacti	ons)		
	recall	precision	time (s)	recall	precision	time (s)	recall	precision	time (s)		
Pearson	$1.00(\pm 0.00)$	$0.64(\pm 0.06)$	5.13	$1.00(\pm 0.00)$	$0.59(\pm 0.09)$	5.12	$0.12(\pm 0.14)$	$0.16(\pm 0.18)$	5.06		
Spearman	$1.00(\pm 0.00)$	$0.63(\pm 0.08)$	16.59	$1.00(\pm 0.00)$	$0.64(\pm 0.10)$	16.19	$0.07(\pm 0.07)$	$0.15(\pm 0.17)$	16.54		
Kendall	$1.00(\pm 0.00)$	$0.63(\pm 0.08)$	9.59	$1.00(\pm 0.00)$	$0.64(\pm 0.09)$	9.39	$0.05(\pm 0.08)$	$0.11(\pm 0.17)$	9.65		Non-conditional
MI	$0.95(\pm 0.04)$	$0.69(\pm 0.11)$	3.29	$0.80(\pm 0.09)$	$0.69(\pm 0.07)$	3.48	$0.98(\pm 0.04)$	$0.64(\pm 0.08)$	3.54		
ϕ_k	$0.90(\pm 0.07)$	$0.68(\pm 0.08)$	1665.08	$0.58(\pm 0.14)$	$0.48(\pm 0.10)$	1658.37	$0.90(\pm 0.04)$	$0.58(\pm 0.05)$	1667.59		
dcor	$1.00(\pm 0.00)$	$0.65(\pm 0.03)$	64.95	$1.00(\pm 0.00)$	$0.65(\pm 0.08)$	64.02	$0.98(\pm 0.04)$	$0.66(\pm 0.13)$	65.24		
Partial Pearson	$1.00(\pm 0.00)$	$0.57(\pm 0.05)$	83.49	$1.00(\pm 0.00)$	$0.58(\pm 0.09)$	83.64	$0.07(\pm 0.07)$	$0.13(\pm 0.13)$	83.18		
Partial Spearman	$1.00(\pm 0.00)$	$0.58(\pm 0.06)$	422.48	$1.00(\pm 0.00)$	$0.60(\pm 0.05)$	422.05	$0.03(\pm 0.08)$	$0.07(\pm 0.15)$	421.78		
CMI	$0.90(\pm 0.04)$	$0.81(\pm 0.08)$	35.96	$0.75(\pm 0.06)$	$0.96(\pm 0.08)$	39.36	$0.98(\pm 0.04)$	$0.66(\pm 0.11)$	37.60		
MRMR Pearson	$1.00(\pm 0.00)$	$0.62(\pm 0.07)$	17.38	$1.00(\pm 0.00)$	$0.71(\pm 0.18)$	17.24	$0.10(\pm 0.11)$	$0.14(\pm 0.16)$	17.80		
MRMR Spearman	$1.00(\pm 0.00)$	$0.60(\pm 0.09)$	141.44	$1.00(\pm 0.00)$	$0.65(\pm 0.06)$	141.35	$0.05(\pm 0.08)$	$0.10(\pm 0.17)$	141.66		
MRMR Kendall	$1.00(\pm 0.00)$	$0.60(\pm 0.09)$	839.84	$1.00(\pm 0.00)$	$0.65(\pm 0.06)$	842.25	$0.05(\pm 0.08)$	$0.10(\pm 0.17)$	841.30	L	Conditional to
MRMR MI	$1.00(\pm 0.00)$	$0.69(\pm 0.16)$	104.99	$0.80(\pm 0.04)$	$0.66(\pm 0.11)$	105.72	$1.00(\pm 0.00)$	$0.65(\pm 0.06)$	105.55		owned data
MRMR ϕ_k	$0.95(\pm 0.04)$	$0.67(\pm 0.15)$	2550.40	$0.48(\pm 0.15)$	$0.50(\pm 0.18)$	2571.69	$0.93(\pm 0.07)$	$0.61(\pm 0.05)$	2562.87		
MRMR dcor	$1.00(\pm 0.00)$	$0.58(\pm 0.01)$	1606.65	$1.00(\pm 0.00)$	$0.62(\pm 0.11)$	1601.20	$0.98(\pm 0.04)$	$0.67(\pm 0.07)$	1604.79		
PermImp (GBR)	$1.00(\pm 0.00)$	$0.72(\pm 0.04)$	3288.71	$0.90(\pm 0.07)$	$1.00(\pm 0.00)$	1812.93	$1.00(\pm 0.00)$	$0.63(\pm 0.12)$	2122.35		
Impurity (GBR)	$0.83(\pm 0.00)$	$1.00(\pm 0.00)$	1956.00	$0.70(\pm 0.04)$	$0.98(\pm 0.05)$	1149.63	$0.83(\pm 0.00)$	$1.00(\pm 0.00)$	1404.10		
SHAP (GBR)	$1.00(\pm 0.00)$	$0.10(\pm 0.00)$	2020.25	$1.00(\pm 0.00)$	0.12(±0.02)	1152.52	$1.00(\pm 0.00)$	$0.10(\pm 0.00)$	1409.82		

Permutation hypothesis test

(if p-value <5% feature is relevant)

Recall = TP / (TP + FN)

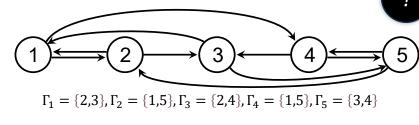
Precision = TP / (TP + FP)



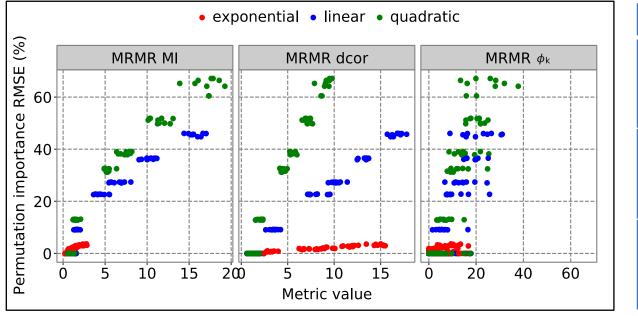
barter trading (data by data)

Case Study | Synthetic datasets

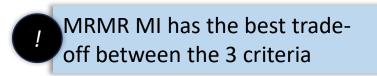
... relation with data value?



$$50X_i^3 + 40X_i^7 + \sum_{j \in \Gamma_i} \left[16.1X_j^{11} + 6.5X_j^{13} + 19.4X_j^{19} + 25.8X_j^{24} + 32.3X_j^{27} \right] + \varepsilon$$



		Owner 1	Owner 2	Owner 3	Owner 4	Owner 5
Linear	Correctly exchanged	9	10	9	10	9
	Wrongly exchanged	2	4	3	2	8
Exponential	Correctly exchanged	8	6	9	7	6
	Wrongly exchanged	4	3	2	4	6
Quadratic	Correctly exchanged	10	10	9	7	10
	Wrongly exchanged	2	5	7	5	1



Each agent has 30 covariates

Case Study | Global Energy Forecasting Competition 2014 (GEFCom2014)

RMSE for January 2013							
Zone	Local	Proposal	Collaborative				
1	19.72	14.58	13.15				
2	27.57	26.53	25.97				
3	34.37	35.06	34.96				
4	27.15	27.09	27.00				
5	31.26	31.06	31.07				
6	32.38	32.46	31.44				
7	14.22	14.11	14.4				
8	14.49	14.66	14.77				
9	20.37	19.94	20.03				
10	43.48	42.92	42.09				

Zone 1 has higher rmse improvement \rightarrow shared information with all other zones!

Zone 2 has the second higher rmse improvement and the second higher shared value



Key messages

- Collaborative forecasting has potential to improve forecasting accuracy in many use cases
- Data sharing incentives are needed to promote such collaboration
- Incentives explored by our team:
 - Data monetization
 - Barter trading
- Projects

José Andrade Researcher **CPES @ INESC TEC**

Giovanni Buroni Researcher **CPES @ INESC TEC**

月而

Ricardo Bessa Coordinator & Researcher CPES @ INESC TEC

Fernando Paula Researcher **CPES @ INESC TEC**

André Garcia

Researcher CPES @ INESC TEC

Carla Gonçalves

Researcher

CPES @ INESC TEC

Thank you!

Rua Dr. Roberto Frias

4200-465 Porto

INESCTEC

Portugal

T +351 222 094 000 info@inesctec.pt

www.inesctec.pt

